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Abstract—Necessary for furthering the development of more
powerful evolutionary design systems, capable of scaling to
evolving more sophisticated and complex artifacts, is the ability
to meaningfully and objectively compare these systems by
applying complexity measures to the artifacts they evolve.
Previously we have proposed measures of modularity, reuse
and hierarchy (MR&H), here we compare these measures to
ones from the fields of Complexity, Systems Engineering and
Computer Programming. In addition, we propose several ways
of combining the MR&H measures into a single measure of
structure and organization. We compare all of these measures
empirically as well as on three sample objects and find that the
best measures of complexity are two of the proposed measures
of structure and organization.

I. INTRODUCTION
Over the years researchers have developed many differ-

ent evolutionary design systems, some inspired by natural
embryogenies and some based on engineering and software
development [4], [5]. Necessary to further the science of evo-
lutionary design are metrics that meaningfully compare the
complexity of evolved products of these different systems.
Ideally, these metrics should give some guidance as to how
to construct better evolutionary design systems, such as by
measuring those characteristics that are needed for achieving
scalability.
As yet, what little work has been done toward developing

a theory of complexity and scalability has generally been
to propose characteristics, or categories, of representations
for evolutionary design systems but not well-defined metrics
for measuring them. Angeline classifies representations by
whether or not they allow reuse of genotypic elements,
and then whether or not the evolved generative system is
local to each individual or shared across the population
[1]. Bentley and Kumar distinguish between representations
which directly encode an object and then distinguish be-
tween those that indirectly encode an object implicitly, like
cellular automata, or explicitly, like a computer program
[3]. Komosinksi and Rotaru-Varga list several characteristics
of representations for a creature design problem, of which
modularity, compression and redundancy are generalizable
to other design domains [15]. Stanley and Miikkulainen
take five attributes of embryogenies from natural biology as
their dimensions for classifying representations – cell fate,
targeting, heterochrony, canalization and complexification –
but it is difficult to apply these attributes to representations
that are not models of developmental biology [22].
One exception in which well-defined metrics are given for

an object’s description is from our previous work, in which
we proposed that modularity, reuse and hierarchy (MR&H)
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are the characteristics for improving scalability and in which
we defined metrics for measuring them [12]. In this paper
we compare our metrics of MR&H against several existing
complexity measures from outside the field of Evolutionary
Computation. Further, we propose several ways of combining
our measures of MR&H into a single measure of the structure
and organization of an object’s encoding.
Our comparison of metrics consists of both an empirical

comparison as well as by testing the metrics on three different
scenarios. The empirical comparison consists of evolving
designs for different sizes of a scalable design problem and is
based on the assumption that as the problem scales up, the
complexity of evolved designs should increase. The three
scenarios consist of examining the complexity scores on
hypothetical objects, which are constructed in different ways,
and seeing how intuitive they score for them. The results of
comparison show that the best measures of complexity are
two of our measures of structure and organization.
The rest of this paper is organized as follows. First, we

describe our model of design representations, since this is
needed to define the metrics operate on them. Second, we
present our measures of Modularity, Reuse and Hierarchy (in
Section III) and the other measures we compare them against
(in Section IV). Next we describe our experimental setup
for comparing the different measures in Section V. Then we
present the results of comparing the different measures on
different sizes of a design problem (Section VI). We follow
this with our work in developing a metric for measuring
structure and organization by combining the measures of
modularity, reuse and hierarchy. Finally we close with a more
general discussion of what else needs to be measured and our
conclusions.

II. DESIGN ENCODINGS ARE PROGRAMS
Before defining various measures of artifacts, it is worth

describing the paradigm under which these measurements are
being taken. To define metrics of an artifact in a way that
generalizes across various types of artifacts, rather than take
measurements of actual fabricated artifacts we take measure-
ments on the data structures that encode these artifacts. These
data structures can be thought of as a forest of tree-structured
objects, in which each object describes the assembly of some
parts, or sub-assemblies, into a larger one (see Figure 1(a)).
Since this data-structure defines how the artifact is “built,”
we consider it a program for building it. Just as computer
programs have procedure calls and iterative loops, so too can
design programs have analogous constructs. If we add links
to the trees to represent the jumps from these procedure calls
and back to the start of an iterative loop this results in this
forest of trees really being one large, inter-connected graph
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Fig. 1. A graphical rendition of a design program in which different shapes
represent different types of operators: (a) the tree structured procedures in
the program; (b) the tree-structured procedures in the program with the links
added to show procedure calls and the extent of iterative loops.

comprised of multiple sub-graphs for each sub-assembly, and
sub-sub-graphs for the sub-sub-assemblies, and so on (see
Figure 1(b)). Thus whereas the fields of Computation Theory
and Complexity consider programs to be strings (on the tape
used by a Turing Machine) here we consider programs to be
graphs.
Continuing with the “design encoding is really a design

program” metaphor, these graph-structured design programs
can be compiled to produce a tree-structured set of design-
constructing operators in which all the iterative loops have
been unraveled and all the procedure calls have been replaced
with the operators inside them. We call this compiled-out
tree-structure the assembly procedure for constructing the
design.
In the field of Evolutionary Algorithms, the design pro-

gram is the genotype, the actual artifact (or design) is the
phenotype, and the assembly procedure is an intermediate
layer between genotype and phenotype. Examples of types
of design programs are the artificial genes in a genetic
regulatory network, the rules of a cellular automata, and the
genotype in Genetic Programming. In the experiments in this
paper the genotype we are evolving is the design program,
and it is compiled into an assembly procedure which is then
sent to a design-constructor to create the phenotype – this
will be described in more detail in Section V-B. Some of the
measures presented in the following two sections will be of
the design program and some of them be of the assembly
procedure.

III. MEASURING MODULARITY,
REUSE AND HIERARCHY

The method for measuring MR&H comes out of what is
meant by these terms. Modularity is defined as an encapsu-
lated group of elements that can be manipulated as a unit,
reuse is a repetition or similarity in a design, and hierarchy is
the number of layers of encapsulated modules in the structure
of a design.
Each of MR&H aids the scalability of evolutionary design

systems in different ways. Modularity is related to the build-
ing block hypothesis of genetic algorithms (GAs) [9], which

states that GAs work by testing groups of basic components
and combining them to form highly fit solutions. Simon, in
his parable of two watchmakers, illustrated how the ability
to create and manipulate modules greatly improves the rate
at which more structurally sophisticated artifacts can be built
[20]. For larger and more sophisticated artifacts, being able
to hierarchically create levels of nested modules is needed
to break things down so no one module is too large and
sophisticated to evolve on its own. Being able to reuse design
modules is helpful in two ways. First, a module that is useful
in one part of the design may be useful somewhere else
so creating modules is a way of scaling the basic unit of
variation. Second, reuse of a parameter, assembly or function
is a way of capturing design dependencies into a single
location in the design encoding thereby enabling variation
operators to more easily make coordinated changes in the
design. The measures of MR&H can now be defined.
Modularity: The modularity value of a design is a count

of the number of structural modules in it, which we define
as an encapsulated group of elements in the design encoding
that can be manipulated as a unit. Since a label to a procedure
can be manipulated as a unit, each procedure in the design
encoding counts as one toward the encoded modularity value.
In addition, the ability to change the iteration counter means
that the group of encoded elements inside an iterative block
also constitute a module, hence each iterative block is one
module in the encoding. As well as counting modules in
the encoded design (which we label Mp, for modules in the
program) we can also count the number of occurrences of
modules in the design itself, Md. In this case each procedure
call counts as one toward the design modularity value and
each iteration of an iterative block adds one to the modularity
value of the design.
Reuse: is a measure of the amount of reuse of genotypic

elements in creating the phenotype. It can be calculated by
counting the “size” of the object and dividing this by the size
of the encoding. For example, the amount of reuse in a string
is the size of the string divided by the size of the program
the generates the string. Here we measure three types of
reuse. The first, overall reuse, Ra, is the average amount
of reuse of a symbol and is calculated as the size of the
design’s assembly procedure divided by the size of the design
program. Second, reuse of build symbols, Rb, is the average
number of times a design constructing operator – as opposed
to an operator that is a conditional, iterative statement or
procedure call – is used. Third, reuse of modules, Rm, is the
average number of times modules are reused in the design
and is calculated as Md divided by Mp.
Hierarchy: The hierarchy of an encoded design is a

measure of the number of nested layers of modules, such
as through iteration or abstraction. A design encoding with
no modules has a hierarchy of zero. Each nested module,
whether a successful call to a labeled procedure or a non-
empty iterative block, increases the hierarchy value by one.
This is similar to measuring the depth of an object’s assembly
sequence [8], but whereas there the measure is of basic steps



in constructing an object, here we are measuring modules of
basic steps.
As defined, these measures of MR&H apply to any

programming language, and are thus comparable on the
same systems as existing complexity measures, such as AIC,
Logical Depth and Sophistication. These measures can also
be generalized to any representation with a hierarchical graph
structure, such as the set of parts used to describe a complex
assembly in a CAD/CAM package, and any system that can
be described as a hierarchical graph structure, such as a
regular expression. Not as obvious is how to apply these
measures to non-procedural representations such as DNA and
artificial genetic regulatory networks, for which the challenge
is mainly the identification of modules.
In the rest of this paper we use MRH to refer to the metrics

for modularity, reuse and hierarchy and MR&H to refer to
the characteristics of modularity, reuse and hierarchy. Also,
in Section VII we discuss how to combine these measures
of MRH into a single measure, which we call a measure of
structure and organization.

IV. COMPLEXITY METRICS

Even though the MRH metrics were developed specifically
for computer-automated design they may not be any better
for comparing the sophistication of evolved designs as similar
metrics developed in related fields. One of the objectives
of this paper is to compare these metrics against ones that
already exist. For this comparison we selected those metrics
which are relatively straightforward to compute or approx-
imate and which we thought had a reasonable chance at
being relevant. Example of some of measures we left out are:
Arithmetic Complexity, Cognitive Complexity, Dimension
of Attractor, Ease of Decomposition, Logical Complexity,
Mutual Information, Number of Inequivalent Descriptions,
Number of States in a Finite Automata, Number of Variables,
Thermodynamic Depth, and Variety. (all of these measures,
as well as several others, are reviewed in [7]). We now
present the metrics which we compare MRH against.
Algorithmic Information Content (AIC) is one of most

well known and influential complexity metrics, having been
used as a starting point for many others, and was invented
separately by Chaitin [6], Kolmogorov [14], and Solomonoff
[21]. The AIC of a given string is the length, in number of
symbols, of the shortest program that produces that string.
For this work we estimate the AIC by calculating the number
of symbols in the design program since this is the evolved
genotype that defines the object. While it is likely that some
of the evolved genotypes could be compressed, using their
size is a simple upper bound on AIC and is a correct measure
of the size of the program that was evolved. This measure is
also analogous to counting the number of lines in a computer
program, which is one measure of its complexity [7].
Design size is a measure of the size of what is encoded by

the design program, and here we measure this by counting
the number of symbols in the assembly procedure. In the
field of Complexity, in which there is a string and program

that produces that string, this measure would be a count of
the size of the string.
Logical Depth is a measure of the value of information

and, for a given string, it is the minimum running time
of a near-incompressible program that produces the string
[2]. In this case we use the evolved design program as
the near-incompressible program and calculate the running
time of this program as the number of symbols that are
processed in generating the assembly procedure. This can
also be considered computation complexity, in that it is a
measure of the amount of computational time that is spent
to compute the assembly procedure.
Sophistication is a measure of the structure of a string

by counting the number of control symbols in the design
program used to generate it [16]. In trying to measure the
structure of a string, the goal for this measure is similar to
the goal of MRH metrics. Here we calculate the sophistication
of a design by counting the number of control symbols – that
is, procedure symbols, loop symbols, conditionals – in the
program that is used to generate it.
Number of Build Symbols, whereas Sophistication is

a measure of structure by counting the number of control
symbols, we propose a counter measure which is a count of
the number of non-control symbols in the design program
that is used to generate the assembly procedure. In our
system, these non-control symbols are the operators that are
used by the design-constructing interpreter and we call them
build symbols, since they are used to build a 3D shape.
Grammar Size: any string that has a pattern can be

expressed as being generated by a grammar. Simple strings,
with simple patterns, generally have a simple grammar thus
the size of the grammar needed to produce a string serves as a
measure of complexity [7]. Since the representation used here
is based on parametric Lindenmayer systems [18], (although
it is more like Genetic Programming [17]) the procedures can
be thought of as grammar rules. To calculate the grammar
size of an assembly procedure we use the design program
that produces it as the grammar and count the number of
production-rules in it.
Connectivity: more complex systems have greater inter-

connectedness between components, thus the connectivity of
a system can be used as a complexity measure [7]. For a
graph-structure, its connectivity is the maximum number of
edges that can be removed before it is split into two non-
connected graphs. To calculate the connectivity of a design
we use the connectivity of the design program that is used
to generate it, since this program has a graph-structure to it.
Number of Branches: inspired by the previous measure

of complexity, another measure of the structure of a graph is
a count of number of nodes which are branch nodes – nodes
which have two or more children. Strings have a very simple
structure with no branching nodes, whereas a fully balanced
binary tree will have roughly lg(n) branch nodes. For this
measure we count the number of branches in the assembly
procedure produced by the design program.
Height: is the maximum number of edges that can be



traversed in going from the root of the tree to a leaf node.
Unlike other complexity metrics, which are based on strings,
this measure is for trees and here we apply this measure
to the assembly procedure that is generated by the design
program. This measure of complexity is related to work in
formal language theory in which ideas for measuring ease
of comprehension are to measure the depth of postponed
symbols [23] or depth and nesting, called Syntactic Depth,
[19].

V. EXPERIMENTAL SETUP
To compare metrics we use an existing evolutionary design

system on a previously used benchmark problem. The evo-
lutionary design system we use is GENRE, and this system
allows the user to select which of combinations of MR&H
to enable by selecting which aspects of a programming lan-
guage (conditionals, labeled procedures, and iterative loops)
are available to the representation [11]. To compare the
different metrics of complexity we perform runs with them
on different sizes of a scalable design problem.

A. Test Problem
For the experiments in this paper the design problem

we use is that of producing a 3D table out of cubes, for
which the fitness function for scoring tables is a function
of their height, surface structure, stability and number of
excess cubes used [10]. Height is the number of cubes above
the ground. Surface structure is the number of cubes at the
maximum height. Stability is a function of the volume of the
table and is calculated by summing the area at each layer of
the table. Maximizing height, surface structure and stability
typically results in table designs that are solid volumes, thus
a measure of excess cubes is used to reward designs that use
fewer bricks,

fheight = the height of the highest cube, Ymax.

fsurface = the number of cubes at Ymax.

fstability =
Ymax∑

y=0

farea(y)

farea(y) = area in the convex hull at height y.
fexcess = number of cubes not on the surface.

To produce a single fitness score for a design these five
criteria are combined together:

fitness = fheight × fsurface × fstability/fexcess (1)

This problem can be scaled by varying the size of the grid.
In our experiments we do runs with sizes from 20× 20× 20
to 80 × 80 × 80.
The design constructor for making table designs starts

with a single cube in an otherwise empty 3D grid and then
executes the assembly procedure that was produced from
compiling the genotype. Cubes are added to this design with
the operators forward() and backward(). The current
state, consisting of location and orientation, is maintained
with the addition of cubes resulting in a change in the current

location and the rotate-xyz() operators change the
current orientation. A branching in the assembly procedure
results in a split in the construction process with construction
continuing with each child subtree working with its own copy
of the construction state.

B. Representation

In the following example we demonstrate the representa-
tion and method for creating a design as well as calculate
its complexity scores using the different complexity metrics.
This example design encoding consists of a starting com-
mand, Proc 0(4.0,2.0), and two labeled procedures, Proc 0
and Proc 1, each with two parameters:

Proc 0(4.0, 2.0) :

Proc 0(n0, n1) :
n0 > 3.0 → rotate-z(1) [ Proc 0(1.0,2.0) re-

peat(2) [ forward(n1/2) [ repeat-end
[ Proc 1(n0+2.0,2.0) [ forward(1) ]
] [] [] ] ] ]

true → rotate-z(1) [ repeat(4) [ rotate-
y(1) [ forward(n1+1.0) repeat-end [
rotate-x(1) ] ] ] [] ]

Proc 1(n0, n1) :
n0 > 1.0 → forward(2) [ Proc 1(1.0,n1+1.0)

[ forward(1) ] rotate-y(2) [ []
Proc 1(1.0,n1+1.0) [ forward(1) ] ]
Proc 1(n0-2.0,n1-1.0) [ end-proc ]
]

n0 > 0.0 → rotate-y(1) [ [] backward(n1) [ end-
proc [] ] ]

A graphical version of this design program is shown in
Figure 1.
To generate the assembly procedure for this design

program it is executed, starting with the statement
Proc 0(4.0,2.0). This results in the following
assembly procedure:
rotate-z(1) [ rotate-z(1) [ rotate-y(1)
[ forward(3) rotate-y(1) [ forward(3)
rotate-y(1) [ forward(3) rotate-y(1)
[ forward(3) rotate-x(1) ] ] ] ] [] ]
forward(1) [ forward(1) [ forward(2) [
rotate-y(1) [ [] backward(3) [ forward(1)
[] ] ] rotate-y(2) [ [] rotate-y(1) [
[] backward(3) [ forward(1) [] ] ] ]
forward(2) [ rotate-y(1) [ [] backward(2)
[ forward(1) [] ] ] rotate-y(2) [ []
rotate-y(1) [ [] backward(2) [ forward(1)
[] ] ] ] forward(2) [ rotate-y(1) [ []
backward(1) [ forward(1) [] ] ] rotate-
y(2) [ [] rotate-y(1) [ [] backward(1) [
forward(1) [] ] ] ] forward(1) ] ] ] []
[] ] [] [] ] ]



Fig. 2. The 3D object that is constructed from the example design encoding.

This example design can be analyzed using the metrics
of MRH and the various complexity measures. The program
has six modules that are used a total of 17 times giving a
modularity value of 6 for the encoding and a modularity
value of 17 for the design. The size of the program is 30
symbols and the size of the final assembly procedure is 38
symbols giving a reuse value of 1.27, and it has five levels
of nested modules which gives it a hierarchy value of 5. Its
scores on the other complexity measures are: an AIC of 30;
a Design size of 38; a Logical Depth of 124; a Sophistication
of 21; 13 build symbols; a grammar size of 2; a connectivity
of 5; 8 branches; and a height of 10.

C. Evolutionary Algorithm
The EA used for the experiments is the Age-Layered

Population Structure (ALPS) [13]. Unlike a traditional EA,
ALPS maintains several layers of individuals of different age
levels and continuously introduces new, randomly generated
individuals into the first layer. It has been shown to work
better than the canonical EA by better avoiding premature
convergence. The setup we use consists of 10 layers, each
with 40 individuals. In each layer the best 2 individuals from
the previous generation are copied to the current generation
and then new individuals are created with a 40% chance
of mutation and 60% chance of recombination. Tournament
selection with a tournament size of 5 is used to select parents.
In our experiments we run 15 trials with each configuration
and each trial is run for one million evaluations.

VI. EMPIRICAL COMPARISON
To compare complexity and MRH metrics we ran a number

of experiments on different sizes of a design problem. The
design problem and evolutionary algorithm were described in
the previous section, and for these experiments we performed
four sets of experiments in which we evolved tables for four
different grid sizes. Here we are working with the assumption
that a more “complex” design is needed to produce good
designs for a larger design space and so we are looking for
complexity metrics whose values scale similarly to design
size.
Figure 3 contains images of two of the best and most

structurally organized tables that were evolved. The smaller

(a) (b)

Fig. 3. Two of the best, and most structurally organized, of the evolved
tables. The fi rst (a) was evolved in the 20 × 20 × 20 design space and the
second (b) was evolved in the 80 × 80 × 80 design space.

TABLE I
A COMPARISON OF THE RESULTING SCORES ON THE DIFFERENT

METRICS OF THE BEST TABLES EVOLVED WITH THE DIFFERENT

REPRESENTATIONS. RESULTS ARE THE AVERAGE OVER 15 TRIALS.
203 403 603 803

Fitness (×106) 0.56 18.1 123 440
AIC 719 768 680 775

Design Size 6769 9499 9739 9944
Log. Depth 9541 13421 14376 18011

Sophistication 79.9 70.53 74.0 85.4
# Bld Sym 626 684 593 676

Grammar Size 13.5 13.2 12.5 13.5
Connectivity 33.7 25.2 26.4 37.3
# Branches 1653 2087 1905 1825

Height 118 145 276 220
Modularity (Mp) 27.5 26.1 30.8 31.1

Mod. in Design (Md) 377 547 1133 1329
Reuse (Ra) 12.1 14.0 16.6 15.7

Reuse of Bld. (Rb) 15.2 16.2 19.6 18.5
Reuse of Mod. (Rm) 15.2 21.8 37.4 50.1

Hierarchy (H) 7.53 7.7 8.0 8.6

table, Figure 3(a), was evolved in the 20 × 20 × 20 design
space and has a fitness of 582221 and the following scores:
AIC of 913; Design Size of 8007; Logical Depth of 10311;
Sophistication of 89; 811 build symbols; a Grammar Size
of 13; a Connectivity of 34; 1595 branches; and a height of
155. Its MRH scores are: Mp is 34, Md is 431; Ra is 8.8; Rb

is 9.9; Rm is 12.7 and it has an H of 8. The larger table,
Figure 3(b), was evolved in the 80 × 80 × 80 design space
and has a fitness of 600324286 and the following scores:
AIC of 630; Design Size of 9753; Logical Depth of 14365;
Sophistication of 90; 529 build symbols; a Grammar Size
of 11; a Connectivity of 58; 1668 branches; and a height of
168. Its MRH scores are: Mp is 20, Md is 2202; Ra is 15.5;
Rb is 18.4; Rm is 110.1 and it has an H of 9. While these
scores give examples of the differences that can happen, a
better overall picture is gained from looking at the average
scores from a number of evolutionary runs on different sizes
of the design problem.
Table I lists the average values over 15 trials of the

different measures as applied to the best tables evolved
on different sizes of the design problem (20 × 20 × 20,
40× 40× 40, 60× 60× 60, and 80× 80× 80). As expected,
the averaged best fitness monotonically increases along with
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Fig. 4. A graphical rendition of the assembly procedures for constructing the two tables in Figure 3.

an increase in size of the design space. The measures which
have values that also monotonically increase in step with an
increase in size of the design space are: Design Size, Logical
Depth, Md, Rm, and H. Of these it is not surprising that
Design Size increases with the size of the design space and,
given that the Design Size increases, it is also not surprising
that Logical Depth (a measure of the running time of the
program that creates the assembly procedure) also increases
with size of the design space. Interestingly, the information
in a design, AIC, does not grow monotonically with size
of the design space or Design Size. In addition, none of
the other measures grows monotonically with the size of the
design space except some of the measures of structure and
organization: the amount of modularity in the design (Md),
the reuse of modules (Rm) and hierarchy (H).

Of the three measures of reuse, Ra, Rb and Rm, only
modular reuse (Rm) monotonically increases with the size
of the design space and the fitness of the best designs. This
suggests that the type of reuse that is useful is not overall
reuse (Ra) or reuse of build symbols (Rb), but the reuse of
modules. By extension, this also suggests that those design
representations which do not have the ability to hierarchically
assemble and reuse modules will not scale well.

Of the two modularity measures Md monotonically in-
creased along with the increase in fitness and size of the
design space whereas Mp was higher in the 20 × 20 × 20
space than in the 40× 40× 40 space. Since Md is a product
of the number of modules in a design program (M) and the
amount of reuse of these modules (Rm) it may be a more
reliable measure of “complexity” because it is a combination
of two separate aspects: modularity and a modular reuse.
This suggests that measuring modularity alone is not a good
overall measure of the complexity of an object and that
combining the measures of all three characteristics of MR&H

into a single measure may result in an even better measure
of an object’s structure and organization.

VII. MEASURES OF STRUCTURE AND ORGANIZATION

Each of the proposed metrics of modularity, reuse and
hierarchy measure different aspects of the structure and
organization of an object. Of interest is combining the
scores of these three metrics into a measure of structure
and organization with a single value, for which there are
various methods of doing this. One method for combining
the three scores of MRH into a single value is by treating each
of them as the orthogonal axes of a 3D system and then using
the length of the vector from the origin as the measure of
structure and organization of an object. Since the measure
of modular reuse worked well on its own, we also include
a variant of this measure of structure and organization using
modular reuse instead of overall reuse.

SO1 =
√

M2 + R2
a + H2 (2)

SO2 =
√

M2 + R2
m + H2 (3)

A problem with this approach is that the different metrics
vary in their range, and a small change in hierarchy will
generally have little impact on the overall structure and
organization measure of an object since hierarchy usually
has the smallest value.
Another method for combining the three MRH scores is to

simply multiply them together.

SO3 = M × Ra × H (4)
SO4 = M × Rm × H (5)

This approach has the desirable property that a change of
X% in any one of MRH will result in the same X% change
in the overall measure of structure and organization,



TABLE II
DIFFERENT WAYS OF COMBINING MRH SCORES TO PRODUCE A SINGLE

MEASURE OF STRUCTURE AND ORGANIZATION.
203 403 603 803

Fitness (×106) 0.56 18.1 123 440
SO1:

−−−→MRaH 31.3 31.1 37.1 37.1
SO2:

−−−→MRmH 34.0 36.0 51.6 64.4
SO3: M×Ra×H 2013 2872 3708 4019
SO4: M×Rm×H 2889 4324 8643 11207
SO5: M×Ra×H

AssemSize 0.31 0.31 0.38 0.40
SO6: M×Rm×H

AssemSize 0.42 0.46 0.89 1.13
SO7: M×Ra×H / AIC 3.22 4.68 6.75 6.77
SO8: M×Rm×H / AIC 4.59 6.87 15.4 19.3

Of concern with the initial approaches to measuring struc-
ture and organization are that they do not take into account
either the size of the object or the amount of information in
it. For example, a large object with a small percentage of
its information organized into some structure can outscore
a much smaller object which has a small, maximally-
organized, design program. Two ways to normalize structure
and organization scores for size are to divide by the size of
the object and to divide by the amount of information in the
object.

SO5 =
M × Ra × H

DesignSize
(6)

SO6 =
M × Rm × H

DesignSize
(7)

SO7 =
M × Ra × H

AIC
(8)

SO8 =
M × Rm × H

AIC
(9)

Table VII contains the scores for these different measures
of structure and organization (SO) on the best design pro-
grams evolved for different sizes of the design problem. Of
these eight measures of structure and organization, neither
SO1 and SO5, both of which use overall reuse and not
modular reuse, increase monotonically along with the size
of the design space. The other six measures of structure
and organization do increase monotonically, with the four
measures of structure and organization which use modular
reuse (Rm), instead of overall reuse, scaling in a way that
better matches the increase in design space and the increase
in fitness.

VIII. COMPARING MEASURES ON EXAMPLES
One shortcoming with some measures of complexity, such

as AIC, is that they are not very intuitive. We can examine
how intuitive these measures of structure and organization
are by trying them on a couple of examples. First, consider
the AIC of an algorithmically random bit string, by which
is meant one with no regularities. Since the string has no
regularities it cannot be compressed, so its AIC is the size
of the string plus the overhead necessary for the print
operator. Compare this to the MRH and structure and organi-
zation values of this string: its modularity value is 0, since

it has no modules, its reuse value is 1, since there are no
reused symbols, and its hierarchy value is 0, since there is no
modules to be nested. Using these values, its various structure
and organization values (SO1 . . .SO8) are: 1, 1, 0, 0, 0, 0, 0,
and 0. These values of 0 and 1 for the measures of MRH and
structure and organization match our intuition that a random
string does not have a sophisticated structure.
Next, consider what happens to the structure and orga-

nization values when an object, A1, is joined to itself to
form a new object, A2. In this case the design program of
the new object, A2, would be the same as for the original
object, plus the module, A2 = A1 + A1. As a result of
this new module, the hierarchy of A2 would be H(A1) plus
1 and the modularity would be Mp(A1) plus 1. Depending
on the AIC of A1, the amount of reuse will be up to
a factor of 2 larger for the new object since R(A2) =
DS(A1)+DS(A1)+k

AIC(A1)
, where k is the size of adding the new

module and DS(A) is the Design Size of A. As a result of
these changes in MRH, the structure and organization values
of SO5 through SO8 should be only slightly larger, but those
of SO3(A2) and SO4(A2) will be roughly double that of
A1. Consider what happens to other scores of complexity:
AIC, Sophistication and Grammar Size increase slightly but
Logical Depth doubles. Since A2 is just two copies of A1,
it is not clear that it should have twice the complexity of
A1, thus measures SO5 through SO8 are more intuitive than
SO3(A2), SO4(A2) and logical depth on this example.
Similarly, consider the case in which two completely

different objects, A1 and A3, with the same complexity and
MRH scores, are combined to form a new object, A4: A4 =
A1+A3. In this case the new module results in the hierarchy
of the new object being one plus the hierarchy of either of its
component objects: H(A4) = H(A1) + 1 = H(A3) + 1. The
modularity of this new object is equal to one plus the sum
of its to component objects: M(A4) = Mp(A1)+Mp(A3)+1.
Whereas both modularity and hierarchy increase, this new
object has a reuse slightly less than both of its component
objects since the size of the phenotype is DS(O1)+DS(O3)
but the size of the genotype is AIC(O1) + AIC(O3) plus
some additional symbols for specifying A4 = A1 + A3.1
Thus SO3 and SO4 would be (roughly) double in value
for A4 as they are for A1 and A2, but SO5 through SO8

would change little since both AIC and design size would
also (roughly) double in size. Not only would AIC for A4 be
roughly double that of either A1 or A3, but so would Logical
Depth, Sophistication, and Grammar Size. Just as combining
an object with itself does not seem like it should lead to a
doubling in complexity, neither does it seem that combining
two completely different objects with the same complexity
should lead to a doubling of complexity. Thus, as with the
previous example, we find that the more intuitive measures
are SO5 through SO8.

1To be precise, the design programs for both A1 and A3 have a starting
rule, one of these is kept and is changed to call the new rule, A4 = A1+A3,
and the other starting rule is deleted so the AIC of A4 is only a couple of
symbols larger than AIC(A1) + AIC(A3).



To summarize the results of these three examples we can
state some desirable properties of a measure of complexity:
1: The complexity value of a random string should be
small.

2: The complexity value of an object joined to itself should
be only slightly larger than that of the original object.

3: The complexity value of two objects joined together
should not be smaller than the lesser value of the two
original objects and should not be much larger than the
greater value of the two original objects.

Using these principles, and the results of the experiments in
Section VI, the best measures of complexity are SO6 and
SO8.

IX. CONCLUSION
Necessary for the advancement of scalable evolutionary

systems is the identification of the fundamental properties of
such systems and metrics for measuring them. As yet, the
only clear metrics to come from the field of Evolutionary
Computation are measures of modularity, reuse and hierarchy
(MRH). Here we compared the MRH measures to various
measures of complexity from other fields with the goal of
identifying which ones best scale with what we intuitively
think of as complexity. In addition, we proposed various
measures of structure and organization by combining the
measures of MRH in various ways.
Working with the hypothesis that by scaling the size of

a problem, more “complex” solutions are required to solve
it, we compared all measures both empirically, as well as
against the other complexity measures on measure three
example objects. All of the other complexity measures either
failed to scale correctly in our empirical comparison, or gave
unintuitive results for at least one of our example objects. Of
the measures we proposed, two of our measures of structure
and organization passed all of the tests and so we conclude
that the best measures of complexity are SO6 and SO8,
which are the product of multiplying the MR&H measures
together, and then normalizing by either dividing by AIC
(SO6) or by dividing by the design size (SO8).
To summarize, while the amount of information in a design

is certainly an important factor for measuring complexity,
AIC produces unintuitive scores for various examples. Sim-
ilarly, the other measures of complexity (Logical Depth,
Sophistication, . . . ) all fail to pass at least one of our three
proposed properties of a complexity measure. That two
measures of structure and organization pass the empirical
experiments and also correspond well with what we intu-
itively think of as complex indicates that it is not so much
the amount of information that is important in determining
complexity, rather it is how this information is structured and
organized.
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